

UNPRECEDENTED PERFORMANCE, SCALE, AND SAVINGS

Powerful Benefits of Modernizing Your Splunk Environment

A reference design leveraging the power of virtualization, Pure Storage FlashBlade[®], and world-class Splunk engineering expertise

At Kinney Group, we believe the best way to solve the inefficiencies of traditional Splunk operations is to throw out the script and modernize the approach.

The traditional Splunk data center model is complex and difficult to scale for performance, requiring IT professionals to increase server counts and expand data center footprint to gain compute and storage capabilities. This outdated approach means expensive upgrade cycles, disruptive downtime, and increasingly complicated operation, all in an architecture fraught with performance "gotchas."

We've found a better path forward.

This paper provides benefits, insights, and a technical overview of a highperformance, scalable, and resilient data center infrastructure for the Splunk Enterprise platform. This revolutionary reference design is comprised of a powerful combination of VMware virtualization, Pure Storage hardware, Splunk SmartStore, and Kinney Group engineering expertise.

The end result is an elegant approach to hosting Splunk Enterprise that enables dramatic reductions in storage complexity and infrastructure footprint, with transformative performance improvements and a lower total cost of ownership.

Read on to find out how we've done it (and why you'll love it).

Section One: Key Benefits

Key Benefit #1: 4 Unmatched Performance

Discover how this reference design's combination of expert engineering, finetuned software solutions, and solid-state storage can provide a 4x performance improvement over Splunk's own recommendations.

Key Benefit #2: 6 Simplified Scaling

The 1-2 punch of VMWare virtualization and Pure Storage's FlashBlade technology allows for "grow in place" scaling that won't require disruptive downtime, and makes scaling storage for compliance a breeze.

Key Benefit #3: 8 Lower Total Cost of Ownership

Saving on capital expenditures such as servers, storage, and square footage is just the beginning. Reductions in equipment and increases in productivity represent savings on OpEx that make this reference design the gift that keeps on giving.

Section Two: Technical Overview

10 Introduction	10	.	Introd	luction
-----------------	----	----------	--------	---------

- 12 Solution Design
- 18 Performance
- 22 Conclusions

Key Benefit #1: Unmatched Performance

The beauty of this reference design lies in the unmatched performance provided by combining PureStorage FlashBlade, Splunk SmartStore, and Kinney Group's advanced Splunk configuration tuning in a virtualized environment.

PureStorage FlashBlade supports file and object storage, producing a seamless integration with Splunk SmartStore. These technologies provide an all-flash performance, even for data that would have been traditionally rolled into cold buckets on slower storage tiers. Kinney Group optimizations enable rapid ingest and quick searches even at high volume, and testing showed the reference design can easily ingest up to 4x the Splunk-recommended limit. That means a Splunk-recommended architecture for 500 GB of daily ingest can handle 2 TB or more. In fact, testing showed that a sustainable result of 8x the recommended limit (4 TB/day) is possible.

Optimizing Splunk for Lightning Fast Search

Kinney Group's engineering expertise in optimizing Splunk enables users to ingest more data, more quickly. Optimization and fine tuning of the environment yields astonishing results. Splunk searches on traditional, distributed scale-out architectures lead to significant performance degradation as data ages. As it ages, data is tiered to cheaper and lower-performance storage tiers in cold buckets, significantly impacting search performance. This storage approach is especially impractical when responding to search requests related to regulatory or compliance requirements, cybersecurity, and legal discovery—all of which demand information beyond the most immediate data. Utilizing SmartStore with FlashBlade, however, provides all-flash performance with high bandwidth and parallelism for data operations and searches outside of the SmartStore cache. It also ensures that you can efficiently complete critical, non-repetitive tasks while supporting the bursting of SmartStore indexers. By Splunk best practices, high search execution latency should be avoided and can cause a cascading degradation in performance. At the highest levels of data throughput tested in the validation of this design, disk latency never exceeded 2ms, and Input/Output Operations Per Second (IOPS) remained flat.

data ingest versus Splunk's guidance

For data ingest of 500GB/day, Splunk recommends a minimum of 5 indexers* (100GB per indexer), meaning you would need 20 indexers or more for 2TB of volume. This reference design allows for 2TB+ of daily ingest using only 5 indexers — a 75% decrease in hardware requirements.

*https://docs.splunk.com/Documentation/ES/5.2.0/ Install/DeploymentPlanning

FlashBlade + SmartStore

Faster insights from searches, regardless of data age

Increased availability of data thanks to N+2 Erasure Coding protections

Simplified management of Splunk clusters (at any scale) without the need for data migration

99%+ faster node addition and data rebalancing

Faster data access at scale

Faster insights from searches, regardless of data age

No indexer data replication required

Compression and capacity combine to allow you to keep data searchable longer on lightning fast flash storage

Optimizing Splunk for Lightning Fast Security Workloads

Using Splunk Enterprise Security (ES) "off the shelf," there are a number of inefficiencies in search configuration. In the testing and validation of this Reference Design, Kinney Group was able to tune ES to avoid skipped searches while maintaining the level of searches in the environment. Splunk will often skip scheduled searches — as a result of high latency that Splunk is not able to overcome — by postponing or rescheduling the search or searches. This was accomplished, in part, by including updated timing of searches and increasing search slots in the software. (See the "Enterprise Security Tuning" section of this document for details.)

The net result is an environment with such precise software tuning and hardware engineering that you'll imagine the sound of a perfect Formula-1 racing engine every time you walk by your server room.

Enabling Data Security without Hindering Performance

In a traditional Splunk environment, enabling data security introduces various considerations that significantly impact performance. Pure Storage FlashBlade supports native data encryption while still maintaining incredible single chassis performance of 1.5 million IOPS and 15 gigabytes per second (GB/s) of throughput at consistently low latency.

We hate to say "faster, better, cheaper," but...

We know how tired the "faster, better, cheaper" trope is, but the reality simply can't be avoided. This unmatched performance doesn't come with the soul-crushing price tag you'd expect. Rather, we've engineered a solution that allows you to reduce footprint and impact the total cost of ownership (TCO) in a way that demands further inspection — you'll save on capital expenses, operating expenses, and who knows how much on aspirin.

Key Benefit #2: Simplified Scaling

Accommodating scale is an ever-present struggle for IT teams and data center operators — providing sufficient infrastructure to facilitate more demanding requirements such as increasing compute, storage, and network needs. Complexities introduced by Splunk's specialized data ingest requirements only make the situation more challenging (not to mention costly).

The true benefit of scaling is realized not just when future growth is enabled, but when front-end requirements can be met with less hardware, expense, and footprint. Scaling only matters if you can grow from a reasonable starting point. The Kinney Group PureStorage Reference Design empowers uses to achieve better performance at scale from their Splunk environment while requiring 75% less hardware.

Managing growth requires systems and strategies that cost-effectively and efficiently support scale. While traditional data center models rely on prohibitive infrastructure requirements in order to scale (square footage requirements, ballooning engineering and operational costs, and a never-ending list of hardware requirements and purchases), FlashBlade allows incredible scaling in a smaller form factor. Cloud infrastructure provides great scaling, but growing out an existing Splunk cloud architecture is costly, complex, and operationally challenging. The Kinney Group PureStorage Reference Design is a powerful and elegant solution that enables data centers and Splunk solutions to "grow in place."

The Power of Virtualized Scaling

Splunk excels at extracting hidden value from ever-growing Machine Data. This workload, however, requires massive storage capacity, so infrastructure needs to be flexible and scalable, while also providing a linear performance increase alongside that scaling. Simply put, more data means more storage and computing power needs.

Scaling Splunk by leveraging VMware virtualization

Scaling compute & storage is usually solved by physical hardware additions. Virtualization allows you to utilize more of your hardware's capabilities by creating multiple virtual machines on a single piece of physical hardware.

Virtualization reduces footprint, TCO, and time to perform critical tasks.

While the traditional approach of using physical servers for deployment is certainly an option, utilizing virtual machines on scalable hardware solutions allows you to save time, space, and budget while being able to scale and grow "on the fly" as required.

Typical Splunk deployments utilize a handful of components at their core — Forwarders, Indexers, and Search Heads. Forwarders collect and forward data (lightweight, not very resource intensive). Indexers store and retrieve data from storage, making them CPU and disk I/O dependent. Search Heads then search for information across the various indexers, and are usually CPU and memory intensive.

By properly utilizing virtual machines, the Kinney Group PureStorage Reference Design allows users to scale resources to match the increasing demands of these components.

Physical Scaling that Doesn't Grind Operations to a Halt

Modern data centers are looking less and less like giant warehouses of server racks and becoming more distributed, but the basics of traditional data center growth have experienced little disruption, depending heavily on increasing the number of servers, racks, electrical distribution, and space required to accommodate growth.

Utilizing PureStorage FlashBlade enables cloud-like simplicity and agility with consistent high performance and control. The primary way FlashBlade enables grow in place scale is by allowing massive physical expansion in a single chassis by adding "blades," each of which increases capacity and performance without requiring an ever-growing footprint. Rather than shutting down data center operations to scale out by adding new servers and bringing them online alongside existing infrastructure, the FlashBlade solution allows users to grow in place. PureStorage FlashBlade provides up to 792 Terabytes of raw storage in a single 4 rack unit (RU) chassis. Storage is further optimized by using SmartStore, which removes the need for indexer replication (typically a factor of 2 for all data). The total system can grow to ten chassis. FlashBlade also supports in-service hardware and software updates, so scaling up and scaling out won't interrupt operations.

Meet Any Compliance Requirement with Unlimited Scaling

Splunk SmartStore makes the daunting task of data retention simple for organizations that have compliance or organizational obligations to retain data. This PureStorage architecture supports up to 10 FlashBlade chassis, potentially representing years of data even for high-ingest systems.

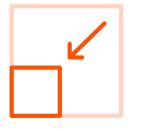
How Does FlashBlade Enable Scale?

FlashBlade is built to scale every dimension of the system effortlessly and linearly—IOPS performance, bandwidth, metadata performance, NVRAM and client connections.

The blade is the scaling unit for FlashBlade. Each blade marries raw NAND flash with system-on-a-chip processing.

FlashBlade has been designed so that anyone can install it. Scale-out is simple, instant and online; to add capacity, you simply add blades — up to 15 per 4U chassis.

Key Benefit #3: Lower Total Cost of Ownership


The distributed data center model provides high availability by replicating data, but effectively eliminates any benefits gained from Splunk data compression by increasing storage requirements. Co-locating storage and compute means when you need more storage, you have to add both compute and storage. To further increase total cost of ownership (TCO), Splunk indexers with a distributed scale-out architecture usually have more servers with less storage to minimize the amount of data and time associated with server maintenance and failures.

In short, the old-school, conservative approach of an ever-growing physical data center comes with incredible expense and tremendous financial risk.

Reduce Server Counts

Splunk recommendations for an Enterprise Security (ES) deployment with a 2 TB daily ingest call for up to 20 indexers. Based on validated testing with this Reference Design, we were able to achieve similar or better performance with only 5 indexers. This 4x improvement over Splunk recommendations represents an incredible cost savings for organizations in year one alone.

Using SmartStore with FlashBlade, Kinney Group's Reference Design lowers the storage and compute requirements when compared to Splunk's classic, "bare metal" storage architecture. With this approach, indexers can be sized based on ingest rates and concurrent search volumes instead of worrying about storage. Additionally, SmartStore only requires storage of a single copy of warm data, and FlashBlade further reduces storage requirements for the object tier by 30–40% through data compression.

Reduced Footprint = Reduced Costs

This validated architecture proves that you can run Splunk more efficiently and with better results, utilizing only a fraction of Splunk's recommendations

Increased performance with just 5 indexers vs. the recommended 20

Impact TCO through storage performance, availability, scalability... all while providing unparalleled results and reducing risk

Reduce Storage Costs by 62%

The impact is even greater when you consider the topic of storage efficiency using the Kinney Group PureStorage Reference Design on FlashBlade. Storage efficiency — fitting more data into less raw flash — is a key contributor to reducing the amount of physical storage that you must purchase, deploy, power, and cool.

In ESG's Economic Validation report, "Validating the Economics of Improved Storage Efficiency with Pure Storage," <u>the results</u> show that Pure saved financial services organizations up to 59% in TCO, and healthcare and government organizations up to 62% through storage efficiencies alone.

Reducing CapEx AND OpEx: Considering Total Financial Impact

While a reduction in the capital costs associated with server and storage acquisition are compelling, those costs typically contribute only 20% (or less) to a 3-year server TCO, with management and other OpEx contributing the remaining 80%.

How does this reference design decrease operating expenses? The short answer is that a smaller footprint means a reduction across the board in the month-to-month and year-over-year expenses hidden in operating a data center — costs like power consumption and other utilities, preventative and predictive maintenance, connectivity, and staffing, to name a few.

With this reference design, you'll impact bottom-line savings through storage performance, availability, scalability, and performance — providing the potential to grow revenue streams and lower costs. You'll significantly reduce overhead by reducing the number of servers required to drive your Splunk ES environment, while simultaneously providing unparalleled results and reducing security risk. And, especially of importance, you'll substantially reduce operating expenses associated with a sprawling data center footprint.

Total Cost of Ownership (TCO) is a complex subject, to be sure. The bottom line is that implementing a powerful, scalable compute and storage solution such as FlashBlade technology in conjunction with SmartStore in a Kinney Group-tuned Splunk environment provides both immediate and long-term financial benefits for your organization.

Technical Solution Overview

Kinney Group is a cloud solutions integrator that designs, builds, and integrates IT infrastructure solutions for some of the most demanding government agencies and commercial organizations. By leveraging nextgeneration technologies, and adopting proven engineering practices and agile development principles, we create custom solutions and world-class environments for data.

Kinney Group, Inc. (KGI) is a leading provider of Splunk platform solutions. Our team has experience working with deployments of all sizes, various stages of execution, and across a variety of use cases. We've helped companies identify end goals, develop and implement Splunk, grow and optimize their environment, and everything in between.

KGI is leading the way in designing a virtualized reference architecture that can be utilized by Pure Storage customers as a guideline for building their own resilient Splunk Enterprise Security (ES) environment. For this endeavor, KGI has leaned on their experience with Pure Storage FlashStack, which incorporates Pure Storage FlashBlade and Cisco UCS, and has already been validated by Pure Storage.

This paper is intended to provide a framework for designing and sizing a high-performance, scalable, and resilient Splunk platform for Splunk Enterprise Security. VMware is a leading platform for server virtualization. Pure Storage is a leading all-flash array provider that supports Splunk Smart Store. Using a combination of VMware, Pure Storage, and Splunk SmartStore, customers can reduce storage complexity and datacenter footprint while maintaining platform performance, resiliency, and efficiency.

Splunk hardware specifications recommend 20 indexers for 2TB daily ingest. We observed acceptable user experience with only 5 indexers running all Pure storage. That's a 75% improvement over Splunk's recommendation.

The below table shows our key findings:

Daily	Number of	Disk	Search	Skipped
Ingest	Indexers	Latency	Latency	Searches
2TB	5	1.5 ms	<3 seconds	0

GOALS AND OBJECTIVES

The goal of this reference architecture is to showcase the scalability, performance, manageability, and simplicity of the virtualized FlashStack solution for a large scale Splunk Enterprise Security deployment.

The key objectives for this reference architecture:

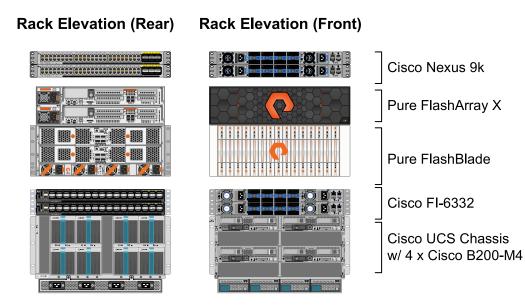
- · Design repeatable architecture that can be implemented quickly in production sites
- Utilize VMware to reduce datacenter footprint and scale environment quickly
- Utilize SmartStore to take advantage of shared object storage to improve operational efficiency
 and reduce overall disk requirements for the environment

AUDIENCE

The target audience for this document includes, but is not limited to, system administrators, storage administrators, IT managers, system architects, sales engineers, field consultants, professional services, and partners who are looking to design and deploy Splunk Enterprise on a virtualized FlashStack platform. A working knowledge of Splunk, VMware, Linux, server, storage, and networking is assumed but is not a prerequisite to read this document.

REFERENCE ARCHITECTURE DESIGN PRINCIPLES

The guiding principles for implementing this reference architecture:


Simple	Using pre-built images and apps, we minimize the amount of manual configuration required.
Secure	Combination of solid security architecture and compliance concepts built in the design.
Available	By using a combination of indexer clustering, Splunk Smart Store, and Pure Storage, we can create an environment that needs nearly zero downtime for upgrades and updates and is fault tolerant to unexpected failures.
Efficient	By utilizing VMware, SmartStore, and Pure Storage, we reduce the overall required datacenter footprint, saving power and cooling costs.
Cost Effective	Combination of technologies drives up flexibility and drives down costs.
Elasticity	Reference design can be scaled based on customer's daily data volume.

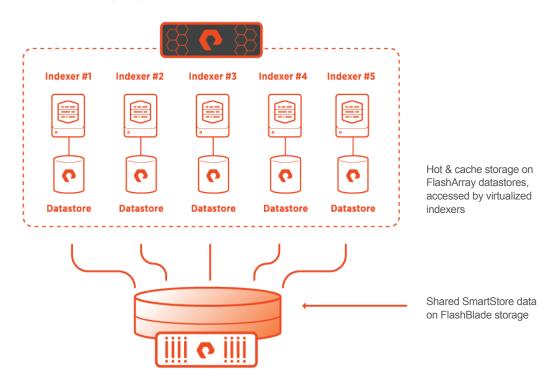
Solution Design

DESIGN TOPOLOGY

VIRTUAL SERVER CONFIGURATION

For Enterprise Security (ES), Splunk recommends sizing based on 80 to 100 GB ingest per indexer, per day. This means an ES deployment with 2 TB daily ingest will require up to 20 indexers. Based on our test using this reference design and tuning, we were able to achieve similar, if not better, performance **using 75% less hardware.** This reference design will require no more than 5 virtualized indexers to support an ES deployment with 2 TB daily ingest with up to 24 active users.

Component	Description	Count
Indexer	16 vCPU 64 GB vRAM 250 GB Local Storage	5
Search Head (Enterprise Security)	16 vCPU 64 GB vRAM 200 GB Local Storage	1 ES 1 non-ES
Cluster Master	12 vCPU 32 GB vRAM 200 GB Local Storage	1
Deployer/Deployment Server	12 vCPU 12 GB vRAM 200 GB Local Storage	1

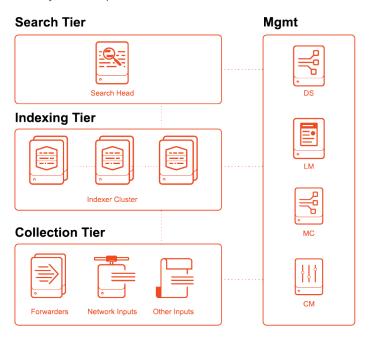

All servers will be run on a VMware stack hosted on the validated Pure FlashStack solution. For information about that solution, please refer to Pure documentation.

PHYSICAL TOPOLOGY

Transcending the conventional model of bare metal installs for Splunk, the FlashStack solution for Splunk involves all virtual machines. The primary reason for choosing virtual machines is to allow for flexible workload positioning and scale out. By leveraging virtualization, it is possible to rapidly scale the compute layer, either at a resources per machine level or number of machines to match your required workloads.

This reference design allows you to leverage an industry proven, fully-documented hardware configuration to support your Splunk environment. By using Pure as the shared storage backbone, you get the benefits of highly performant storage with the business benefits of Evergreen storage and nondisruptive upgrades.

Pure Storage FlashStack consists of a combined stack of hardware (storage, network, and compute) and software (Cisco UCS Manager, Splunk Core & ES, Pure Storage GUI, Purity, Red Hat Enterprise Linux). The following diagram shows the architecture of Pure FlashStack with Splunk SmartStore.



SPLUNK ARCHITECTURE

The architecture chosen for this solution comes from Splunk's Validated Architectures. For more information about the architecture chosen, please see https://www.splunk.com/pdfs/technical-briefs/ splunk-validated-architectures.pdf

The design makes use of a single search head to run Splunk Enterprise and a separate search head for Splunk Enterprise Security, and multiple indexers in a cluster.

VMWARE BEST PRACTICES

The following configuration guides were used as a starting point:

- Performance Best Practices for VMware vSphere® 6.7 (<u>https://www.vmware.com/content/</u> dam/digitalmarketing/vmware/en/pdf/techpaper/performance/vsphere-esxi-vcenter-server-67performance-best-practices.pdf)
- Deploying Splunk Enterprise Inside Virtual Environments (<u>https://www.splunk.com/pdfs/technical-briefs/splunk-deploying-vmware-tech-brief.pdf</u>)

Based on our knowledge and experience with the Splunk platform, some of these configurations were further refined to achieve optimal data ingest and search performance.

PERFORMANCE REPORTING APP

The Search Head includes a Kinney Group-built app to monitor the overall health of the Pure Storage array, along with measuring and reporting on performance metrics from the Splunk servers. The app will be used in conjunction with pre-built searches from the Splunk Monitoring Console.

Test Configuration

TEST OVERVIEW

We are able to confirm the validity of a Splunk architecture utilizing virtualized Splunk indexers, Pure Storage, and Splunk SmartStore. This reference architecture is capable of handling a standard Splunk Enterprise Security load with a daily ingest of up to 2TB.

We were able to test this theory by loading a set amount of machine data into the indexing layer. The replication factor and search factor for the index cluster were both set to 3, and Splunk SmartStore was enabled. To generate search load, data model acceleration was enabled on all data models with correlation searches scheduled to run through the duration of the test.

This reference design includes Puppet Enterprise (PE) and automation modules to automate deployment and enforce integrity of configurations and security settings.

HARDWARE USED

As shown in the physical topology, the test lab used a validated Pure FlashStack design using Pure FlashArray for Splunk hot buckets and smartstore cache, FlashBlade for warm buckets, and Cisco UCS for compute. For more information on this design, please see Pure documentation.

SOFTWARE USED:

The following software packages are used in this design:

- Splunk 8.0.3
- Splunk Enterprise Security (latest version)
- Splunk_TA_cisco-asa (latest version)
- Splunk_TA_cisco-esa (latest version)
- Splunk_TA_cisco-wsa (latest version)
- Splunk_TA_isc-bind (latest version)
- Splunk_TA_mcafee (latest version)
- TA-crowdstrike (latest version)
- TA-ps_flashblade (latest version)
- splunk_app_gogen (version 0.5)

VIRTUALIZATION SETTINGS:

Splunk has provided recommendations for virtualization in deploying Splunk Enterprise inside virtual environments. All these recommendations along with performance best practices guide for vSphere were followed while provisioning VM and allocating storage. All Splunk VMs ran RHEL 7.7.

The following guide was followed for all VMware configurations: <u>https://storagehub.vmware.com/t/</u><u>vmware-vsan/splunk-on-vmware-vsan/splunk-virtual-machine-configuration/</u>

INDEX VOLUME AND SMARTSTORE CONFIGURATION

Two volumes are configured on each indexer — one for the operating system and one for hotbucket and cache. This volume was set to 200 GB. We kept the cache size low to force eviction and cause searches to go back to SmartStore more frequently. To eliminate cache thrash, SmartStore cache can be adjusted to be a higher number. Splunk recommends this cache size to be equal to or greater than 90 days for Enterprise Security deployment.

TESTING PROCEDURE:

Testing was designed to mimic a real-world customer environment with a single indexer cluster and Enterprise Security running on a single search head.

- 1. Splunk Environment consisting of 1 search head, 5 indexers, and 1 cluster master (see Design Topology for virtualized server sizing)
- 2. Configure Splunk SmartStore to utilize Pure Storage
- 3. Configure Gogen on universal forwarders to generate a level of data from the below chart
- 4. Enable Splunk ES data model acceleration on all data models.
- 5. Enable up to 20 correlation searches that run on at least a 1-hour period
- 6. Utilize KGI-built monitoring app, PureStorage-TA, and monitoring console to measure health of data ingestion queues, search scheduler skip ratio, search latency, storage IOPs and disk latency.

Events Patterns Statistics (98) Visualization	
10 Per Page ▼ / Format Preview ▼	< Prev 1 2 3 4 5 6 7 8 Next >
savedsearch_name \$	/ count - /
Threat - Watchlisted Events - Rule	2332674
_ACCELERATE_DM_Splunk_SA_CIM_Change_ACCELERATE_	1166289
_ACCELERATE_DM_Splunk_SA_CIM_Web_ACCELERATE_	1099894
_ACCELERATE_DM_Splunk_SA_CIM_Malware_ACCELERATE_	876452
_ACCELERATE_DM_Splunk_SA_CIM_Intrusion_Detection_ACCELERATE_	873936
_ACCELERATE_DM_Splunk_SA_CIM_Authentication_ACCELERATE_	871551
_ACCELERATE_DM_Splunk_SA_CIM_Performance_ACCELERATE_	65409
Network - Unroutable Host Activity - Rule	44992
Audit - Personally Identifiable Information Detection - Rule	753
Endpoint - Host With Multiple Infections - Rule	272

DATA INPUT

We utilized <u>Gogen</u> to generate sample data to load into Splunk. Gogen is a program capable of reading samples and generating events to simulate various data sources for ingest, parsing, and load testing of various systems. The program also includes splunk_app_gogen, a modular input wrapper for streaming Gogen events into Splunk.

For this test, KGI wrote Gogen configuration files to simulate thirteen (13) sourcetypes matching the various Splunk TAs mentioned above. For simplicity, each sourcetype was set to produce the same number of events per second.

Docker containers running Splunk's official Universal Forwarder Docker image were used to send data to Splunk. These containers were also configured to install Gogen for data generation. Each container was configured to generate events equivalent to approximately 500 GB of daily ingestion. Total data ingestion volume was increased in 500GB increments by starting additional Universal Forwarder Docker containers.

Levels	Daily Ingest	Description
1	500+ GB (~22 GB/hr.)	Matches Splunk Reference Sizing for ES Indexers, and is a requirement to be met for any reference architecture.
2	1+ TB (~45 GB/hr.)	Double the Splunk-recommended ingest rate, representing a 50% reduction in required indexers.
3	2+ TB (~95 GB/hr.)	More than 4x the Splunk-recommended ingest rate, representing a 75% reduction in required indexers.


The following data ingestion rates were tested using this reference architecture:

ENTERPRISE SECURITY TUNING

Out of the box, Splunk Enterprise Security (ES) contains many inefficiencies in the search configuration. Using KGI expertise, Enterprise Security was tuned to avoid skipped searches as much as possible while maintaining the amount of searches in the environment. This included updating scheduled search run time.

As a reminder, this tuning would be required in any large Splunk ES environment to avoid skipped searches. While results were seen in the testing environment, the tuning could be continued for additional gains in scheduled search capacity within the environment.

Performance Tests

DATA INGESTION

Data ingestion was set up at the following levels using Gogen: ~500 GB per day, ~1 TB per day, and ~2 TB per day. Once we reached 2 TB per day, we attempted to index as much data as possible from the universal forwarders before indexing queues stayed above 50% for sustained periods of time, or skipped searches were observed. In our testing we were able to scale the data volume up to 4 TB per day before queues began to fill up.

500 GB/day Results

Using one universal forwarder and data ingestion averaging over 500 GB/day (~22 GB/hr.), we see that the indexers remain stable and ingestion queues are not maintaining high values (throughout testing, we noticed some momentary volume in ingestion queues, but these values are not maintained unless otherwise noted).

Idexing Metrics	6						Edit Export -
lotal Data Thruput (last h	our)	Daily Thrup	ut (based on las		ndexer Resource Utilization		
22	GB ⁷	E	ЛЛ	CDZ	ndexer \\$Load \\$	CPU Utilization \$	Memory Utilizatio
23	UD 0	3	44		gp-ra-idx1 0.14 gp-ra-idx2 0.11	23.89 %	42.5
	••				gp-ra-idx3 0.10	26.06 %	35.8
					gp-ra-idx4 0.14	25.12 %	34.3
					gp-ra-idx5 0.11	19.38 %	33.6
ndexing Rate and Que	ue Fill Pation				-		
		dexing Rate (KB/s) ‡	Status \$	Parsing Queue Fill Ratio (%) 🗘	Aggregation Queue Fill Ratio (%) 🗘	Typing Queue Fill Ratio (%) ‡	Indexing Queue Fill Ratio (S
gp-ra-idx1	1	673	normal	0.00	0.00	0.00	
gp-ra-idx2	1	1989	normal	0.00	0.00	0.00	(
gp-ra-idx3	1	411	normal	0.00	0.00	0.00	e
<pre>sgp-ra-idx4</pre>	1	627	normal	0.00	0.00	0.00	0
kgp-ra-idx5	1	573	normal	0.00	0.00	0.00	e
SmartStore Cache Thra	ash						
ndex ‡		Repeat Downl	oad Percent ‡	All Downloads \$	Repeated Downloa	ads \$	Excessively Repeated Download
ain			29.56	33832		0000	
audit			25.20	127		32	
internal			10.34	348		36	
introspection			3.70	27		1	
telemetry			0.00	2		0	
cim_modactions			0.00	6		0	
isk			0.00	63		0	
			0.00			⁰	
Event Count by Source	type 1h			1	ndexing Log Mix 1h		
Count by Index Time					mcafee:ids-3% - mcafee:epo-3% -	WinEv	ventLog:Application-2%
5M	(2395)93				iśc:bind:transtêr-3%		entLog:Security-31%
ом				cisco:esa:.ntication cisco:esantication	isc:bind:queryerror-3% //	Nulev	ancog.secuny-six
			\setminus	 crowdstriuery;json iscbind:lameserver iscbind:network 	isc:bind:network-3%		
5M			```	iscbind:query iscbind:queryerror iscbind:transfer	isc:bind:lameserver-3% / crowdstrike:falconhost:query:json-3% /		
1					cisco:esa:http-3%		
5:30 AM 5 Thu Jul 16	5:40 AM 5:50 AM	6:00 AM 6:10 AI	M 6:20 AM	purestorde:alerts purestorade:array purestorde:health	cisco.esa.autrenucauori-3%	WinEv	entLog:System-29%

1 TB /day Results

When data ingestion is increased to over 1 TB /day (~45 GB/hr.) using two universal forwarders, we continue to see healthy indexers. Here we can see the queues are still not maintaining any high values.

lexing Metrics	Storage Performance	Heavy Forwarder Stats	Search					(App) KGP Reference Me
dexing Me	etrics							Edit Export •
otal Data Thrupu	t (last hour)	Daily Thrup	ut (based on las	t hour)	Indexer Resource Ut	ilization		
		7			Indexer \$	Load ‡	CPU Utilization \$	Memory Utilizatio
- 44	4 GB	⁷ 1 ,	061	GB 211	kgp-ra-idx1	0.17	20.25 %	41.4
_				211	kgp-ra-idx2	0.18	24.94 %	34.8
		•		**	kgp-ra-idx3	0.15	23.67 %	33.7
					kgp-ra-idx4	0.19	29.13 %	4.3
					kgp-ra-idx5	0.10	23.88 %	33.7
ndexing Rate ar	nd Queue Fill Ratios							
istance ‡	Pipeline Set Count \$	Indexing Rate (KB/s) ‡	Status \$	Parsing Queue Fill Ratio (%)	Aggregation Qu	ueue Fill Ratio (%) 🌣 🛛 Ty	ping Queue Fill Ratio (%) 🗘	Indexing Queue Fill Ratio (
gp-ra-idx1	1	1712	normal	0.0	0	0.00	0.00	(
gp-ra-idx2	1	2547	normal	0.0	0	0.00	0.00	e
gp-ra-idx3	1	268	normal	0.0	0	0.00	0.00	6
gp-ra-idx4	1	3368	normal	0.0	0	0.00	0.00	(
gp-ra-idx5	1	1780	normal	0.0	0	0.00	0.00	(
martStore Cacl	ne Thrash							
dex \$		Repeat Downl	oad Percent 🗘	All Downloads	\$	Repeated Downloads ‡	Exce	essively Repeated Downloa
ain			29.56	338	31	10000		
audit			25.20	1	27	32		
internal			9.57	3	24	31		
introspection			3.70		27	1		
telemetry			0.00		2	0		
im_modactions			0.00		6	0		
otable			0.00		63	0		
isk			0.00		3	0		
vent Count by	Sourcetype 1h				Indexing Log Mix 1h			
ount by Index Ti	me					mcafee:ids-3%		
				Mark and an		mcafee:epo-3%		
	2,543,691			WinEventLog access_combined cisco:esa:amp		isc:bind:transfer-3%	WinEventLo	og:Security-31%
			-	cisco:esantication cisco:esa:http		isc:bind:query-3%		
/			\setminus	crowdstriuery;json iscbind:lameserver iscbind:network		isc:bind:lameserver-3%		
1				iscbind:query iscbind:querverror	circo	cisco:esa:http-3% c:esa:authentication-3%		
1				isc:bind:transfer mcafee:epo	Cisco	cisco:esa:amp-3%		
7:30 AM 7:	40 AM 7:50 AM	8:00 AM 8:10 AM	8:20 AM	8:30 AM mcafee:ids		access_combined-3%	MinEventi	og:System-29%
Thu Jul 16 2020				purestorade:array purestorde:health purestorormance			whevenus	9.09.0001°2370
		_time		- purestorde:space				

2 TB/day Results

When data ingestion is increased to 2 TB /day – four times the Splunk recommended limit – we begin to see indexer health reduced. Data ingestion queues begin to maintain high values, and the potential for data loss is introduced to the environment.

unk>enterpr	rise App: KGP Refer	ence Metrics -			6 Admir	nistrator 👻 Messages	- Settings - Activity -	Help - Find
exing Metrics	Storage Performance	Heavy Forwarder Stats	Search					(App) KGP Reference M
dexing N	letrics							Edit Export *
otal Data Thrup	put (last hour)	Daily Thrup	ut (based on la	st hour)	Indexer Resource Utili	ization		
					Indexer ‡	Load ‡	CPU Utilization ©	Memory Utilizati
8	B GB	a 2	119	GB [*]	kgp-ra-idx1	0.18	27.24 %	42.
		· —,			kgp-ra-idx2	0.15	21.90 %	35.
					kgp-ra-idx3	0.20	27.54 %	34.
					kgp-ra-idx4	0.15	19.94 %	5.
					kgp-ra-idx5	0.19	23.33 %	34.
idexing Rate	and Queue Fill Ratios							
stance 0	Pipeline Set Count 0	Indexing Rate (KB/s) 0	Status 0	Parsing Queue Fill Ratio (%) 0	Aggregation Queu	e Fill Ratio (%) ≎ Ty	ping Queue Fill Ratio (%) 0	Indexing Queue Fill Ratio
gp−ra−idx1	1	3898	normal	6.60		0.00	0.08	
p-ra-idx2	1	3338	normal	0.00		0.00	0.00	
gp−ra−idx3	1	1456	normal	0.00		0.00	0.08	
gp−ra−idx4	1	190	normal	0.00		0.00	0.00	
p-ra-idx5	1	2697	normal	0.00		0.00	0.00	
martStore Ca	che Thrash							
dex ‡		Repeat Downlo	ad Percent ‡	All Downloads :	÷ Re	epeated Downloads \$	Ex	cessively Repeated Downloa
in			29.56	3383		10000		
audit			25.20	12		32		
internal			9.57	324		31		
ntrospection			3.70	2		1		
telemetry			0.00	:		e		
im_modactions			0.00	1		6		
otable			0.00	6:		0		
isk			0.00		1	6		
vent Count b	y Sourcetype 1h				Indexing Log Mix 1h			
ount by Index	Time					mcafee:ids-3%		
м				- WinEventLog		mcafee:epo-3%		entLog Security-31%
		100000		<pre>access_combined ciscocesa.amp</pre>		binctqueryerror-3%	Wines	entrog security-31%
M		4,910,135		ciscores_intication ciscoresentitip crawdstr_encison		iscbind:query-3%		
/			\backslash	iscbindlameserver iscbindhetwork		scibind:network-3%		
574				isobindquery isobindqueryerror isobindtransfer	crowustrike/faicon	cisco:esa:http-3%		
	1			mcafee.epo mcafee.ids	ciscoresa	sauthentication-3%		
1:40 Pit Thu Ju		2:10 PM 2:10 PM 2:20 I	2.30 PM	purestor, de vierts purestor, de amay		cisco:esa:amp-3% /	WinEv	entLog System-29%
2020		time		purestor, chealth purestor, ormance purestor, espace				

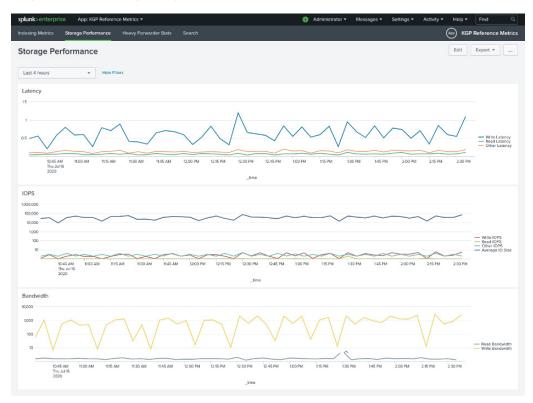
Beyond 2TB?...

For our final test, we wanted to push the environment as far as we could with data ingestion. Ingestion was increased to over 4 TB/day (192 GB/hr.) using 8 universal forwarders. While this level of data ingest appears possible, the results are inconsistent and introduce a variety performance issues. Beyond 2TB our recommendation would be to increase the number of indexers.

SEARCH PERFORMANCE

In addition to scheduling correlation searches. The following Splunk data models were accelerated, to represent the common customer use-cases for Enterprise Security: Authentication, Change, Performance, Web, Malware, and Intrusion Detection.

From within Splunk, we can run a search to find the average search execution latency. According to Splunk best practices, this should never be higher than 3 ms.


Below are the results seen throughout testing:

From these results, we can determine that search latency will not be a problem even at the highest levels of data throughput.

STORAGE PERFORMANCE

Performance metrics were pulled directly from the Pure Storage Array. Below are the metrics achieved at the highest level of data ingest, at just over 2TB per day.

As we can see from the results, even at the highest data volumes, disk latency never exceeded 1.5ms, and IOPs remained relatively flat.

Conclusions

REFERENCE ARCHITECTURE INDEXER SCALING

By utilizing KGI engineering expertise, Pure Storage FlashStack, and VMware virtualization, a sizing capability of 400 GB per day per indexer of daily ingest is achievable without negative impact on indexing or search performance. We determined this to be a safe, reliable sizing utilizing the solution through testing on 5 indexers at 95 GB of data ingestion per hour, and providing a conservative 10% margin for data surge. As such, the following scaling table is achievable with this architecture. This represents a 75% reduction in the number of indexers required for the workload. Utilizing these values, we can extrapolate the required number of indexers using the following function:

of Indexers = Total Daily Ingest Volume / 400 GB

Utilizing this equation, the below table was created to size the number of indexers required for 3 different levels of total daily ingest.

Expected Total Daily Volume	Number of Indexers Recommended
2 TB	5
10 TB	25
20 TB	50

Appendix 1: Configuration Items

SMARTSTORE CONFIGURATION

The following details the configuration used for Splunk SmartStore on the index cluster. Some items may need to be adjusted for customer environments.

Volumes

The following volume configuration must be deployed to the indexers via the cluster master. The primary volume will be used for SmartStore cache on the indexers. The path should be set to the local path used for hot data (in this example /hot/splunk). The remote volume is used to point the indexers to the remote S3-compatible storage provider. The remote endpoint address, access key, secret key for the remote volume should be supplied by the Pure Storage Admin.

[volume:primary]
path = /hot/splunk

[volume:remote]
storageType = remote
path = s3://pk-smartstore
remote.s3.access_key = <access_key>
remote.s3.secret_key = <secret_key>
remote.s3.endpoint = http://<remote_ip>

Indexes

All indexes should be configured following the below template. This should be deployed to the indexers via the cluster master. The home path should be set to the primary volume where the SmartStore cache will be located. The remote path should be set to the remote volume. The cold path and thawed path must be set to avoid errors in Splunk, although they will not be used with SmartStore. The Splunk variable \$_index_name is used for easy replication of individual index configuration, but cannot be used for the thawed path definition.

```
[customIndex]
homePath = volume:primary/$_index_name/db
remotePath = volume:remote/$_index_name
coldPath = $$PLUNK_DB/$_index_name/colddb
thawedPath = $$PLUNK_DB/customIndex/thaweddb
```

SmartStore Cache

Splunk SmartStore utilizes a cache management process that controls bucket evictions and downloads. The space utilized for cache management is configured in server.conf on the indexers. Larger cache sizes provide more performance for historical searches, but require more local drive space allocated for each virtual machine. For our testing, we used the settings below on each indexer, resulting in 100 GB of cache space on each indexer dedicated to SmartStore cache. In practice, it would be beneficial to increase this cache size to meet your organizational requirements.

[cachemanager]
max_cache_size = 100000

© 2020 Kinney Group, Inc., Pure Storage. Pure Storage, the Pure P Logo, and the marks on the Pure Trademark List at https://www.purestorage.com/legal/ productenduserinfo.html are trademarks of Pure Storage, Inc. Other names are trademarks of their respective owners.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

Pure Storage, Inc., 650 Castro Street, Suite 400, Mountain View, CA 94041

18-01013 Pure Reference Design